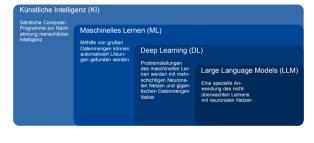


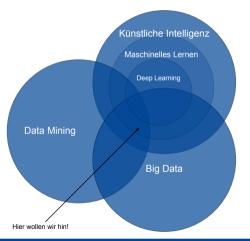
Künstliche Intelligenz im Alltag

Sprach-basierte Assistenzsysteme (Bild via. ChatGPT 5)


Übersetzer als maßgeschneiderte KI-Lösung (Bild via. ChatGPT 5)

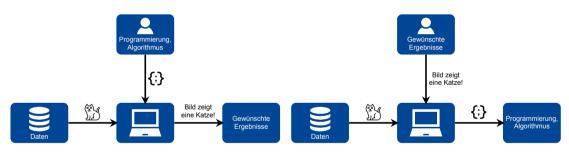
Robuste Objekterkennung (Bild via ChatGPT 5)

Was ist Künstliche Intelligenz?


Eine grobe Einordnung

- Künstliche Intelligenz ist der Sammelbegriff
- Maschinelles Lernen ist die Teilmenge, welche sich mit der Datenverarbeitung befasst
- Deep Learning ist wiederum "nur" eine Teilmenge
- LLMs sind "nur" eine spezielle Form von DL

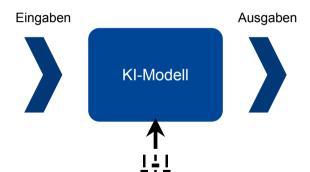
Was ist Künstliche Intelligenz?


Zusammenspiel verschiedener Felder

- Grundlagen waren/sind "Big Data" und "Data Mining"
- Durch die verfügbare Rechenleistung wurde vieles zum ersten Mal möglich
- Historisch gewachsen, deswegen starke Überschneidung
- Interessant für KMU sind primär die Teilmengen ML und DL

Der Wandel im Ansatz

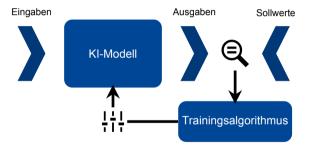
Aus Daten entstehen Modelle


Traditionelles Programmieren

Maschinelles Lernen

5 11.11.2025 KI-Integration bei KMUs M. Gottwald fortiss

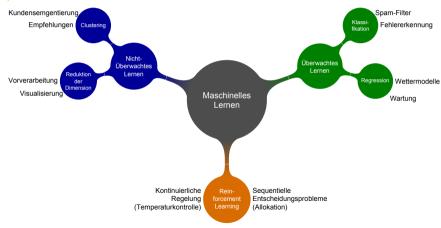
Aus Daten entstehen Modelle


Das Kernkonzept hinter K

- Toller Name für einen Algorithmus oder mathematische Abbildung
- Parameter bestimmen das Verhalten
- George Box : "Im Prinzip sind alle Modelle falsch, aber manche sind nützlich"

Aus Daten entstehen Modelle

Nützliche Modelle via Training



- Sollwerte geben vor, wie die Ausgabe auszusehen hat
- Ausgaben und Sollwerte werden verglichen
- Ein Trainingsalgorithmus nutzt diese Information und stellt die Parameter ein

Landkarte des Maschinellen Lernens

Drei Hauptbereiche mit vielen Facetten

KI-Integration bei KMUs

Angelehnt an Fischer und Winkler, 2019 🏶

Maschinelles Lernen Kurz & Knapp

Drei typische Schritte

- 1. Vorbereitung der Daten:
 - Daten sammeln und bereinigen
 - Zu jedem Eingangssignal das gewünschte Ausgangssignal festlegen
 - Ähnlichkeitsmaß oder Metriken definieren
- 2. Lernphase: Berechnung eines Modell auf Basis der Daten
- 3. Testphase: Wie gut passt das gelernte Verhalten auf ungesehene Signale?

Projekt ZNAflow

Fluss durch die zentrale Notaufnahme

- KI-Projekt, welches durch das Bundesministerium für Bildung und Forschung gefördert wird
- Findet statt am Evangelischen Krankenhaus Mittelhessen
- Ziel ist die Vorhersage der Aus- bzw. Überlastung einer Notaufnahme

(Bild nicht verfügbar)

Überlastungsanzeige

Wie entwickelt sich der Zustand in der Notaufnahme?

- Sitzt im Hauptgang der Notaufnahme
- Kann im vorbeigehen verwendet werden
- Vermittelt Gefühl im Sinne von "Was ist da auf dem Weg?"

Zwei Monitore im Hauptgang der Notaufnahme: Links unsere Vorhersage der Auslastung und rechts Ivena mit ankommenden Rettungswägen

Überlastungsanzeige

Wie entwickelt sich der Zustand in der Notaufnahme?

- Sitzt im Hauptgang der Notaufnahme
- Kann im vorbeigehen verwendet werden
- Vermittelt Gefühl im Sinne von "Was ist da auf dem Weg?"

Darstellung der kommenden Überlastung und der aktuellen Situation vor Ort

Projekt AuSeSol

Zustandsüberwachung eines solarthermischen Kraftwerks

(Bild nicht verfügbar)

Luftaufnahme des Kraftwerks

(Bild nicht verfügbar)

Ein Strang der Parabolspiegel

Projekt AuSeSol

Ziel des Projekts

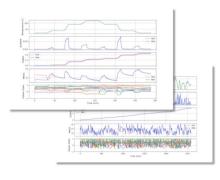
(Bild nicht verfügbar)

- Kraftwerksbetreiber sollen im Alltag unterstützt werden
- Intelligente Algorithmen geben Auskunft über den Zustand des Kraftwerks:
 - Wie ist der Verschmutzungsgrad der Spiegel?
 - Wann soll ein Reinigungszyklus gestartet werden (Arbeitszeit, Wasserverbrauch, ...)?
 - Wie stark ist die Torsion in dem Strang mit den Spiegeln und braucht es eine Korrektur?
 - Wie ist der Zustand des Vakuums in den Rohren?
 - Wie ist die Volumenstrombilanz in einem kompletten Feld?

Proiekt AuSeSol

Digitaler Zwilling

- Erzeugt aus Experten-Wissen
- Visualisierung des Kraftwerks
- Unbekanntes wird mit parametrisierten KI-Modellen approximiert
- Training erfolgt mit vorhandenen Daten und maßgeschneiderten Ansätzen
- ⇒ Akkuratere Beschreibung des Kraftwerks, die man im Betrieb nur schwer bekommt


KI-Integration bei KMUs

Prozessoptimierung

- Re-Balancing: Ventilstellungen bestimmen, damit der Fluss optimal ist
- Problem: Zu viel Erwärmung kann schaden verursachen
- KI-Modelle aufstellen, mit Daten wird genauer Zusammenhang erlernt
- Temperaturen werden durch die Flussrate verändert
- Nötige Änderung an Ventil dank KI bekannt
- ⇒ Optimierung durchführen

Projekt Rise

Vorausschauende Wartung bzgl. Alterung von Lötverbindungen

- Einsatz geplant für Elektrofahrzeuge, genauer: Steuergeräte für Bremsen
- Lötverbindungen werden mit der Zeit spröde und bekommen Risse, die sich durchziehen können
- Ausgangslage ist eine Finite-Elemente-Simulation erstellt, um das Rissverhalten zu erzeugen
- Beachtet Geometrie der Lötverbindung, Materialeigenschaften, thermische und mechanische Belastungen

Projekt Rise

- Finite Flemente-Simulationen brauchen viel Rechenzeit
- Alternative: Fin KI-Modell trainieren mit den Daten der FF-Simulation
- Ziel ist nicht eine bessere Lösung, sondern nur die enorme Rechenzeit hinter der Simulation zu umgehen
- Approximative Lösung wäre ausreichend
- Hürde im Alltag: Reale Daten des Materials sind schwer zu bekommen, die Lösung konnte nur "indirekt" verwendet werden
- Es blieb bei einem Prototypen

Projekt KiMaKu

KI unterstütztes Management von B2B Kundenanfragen

- Problemstellung:
 - Ein Online-Marktplatzanbieter bietet auf seiner Plattform Produkte unterschiedlicher Händler und Hersteller zum Kauf an
 - Oft werden identische Produkte von mehreren Händlern angeboten
 - Deren Produktbeschreibung fällt jedoch unterschiedlich aus
 - Auch der Detailgrad ist von Händler zu Händler verschieden
- Herausforderung: Datenpflege von Hand kaum stemmbar
- Ziel: Produktbeschreibungen identischer Produkte vereinheitlichen

Projekt KiMaKu

Wie hilft Künstliche Intelligenz?

(Bild nicht verfügbar)

- Diesmal bedeutet KI ein Sprachmodell
- Textuelle Beschreibungen von Produkten werden eine Vektordatenbank gefüttert
- Damit sind Vergleiche oder Harmonisierungen möglich
- Ansätze
 - Word2Vec (klassisch): Wörter einzeln einbetten, begrenzt in der Anwendung da kein Zusammenhang
 - LLM2Vec (modern per LLM): ganze Paragraphen werden semantisch eingebettet
- Warum: Distanzen im eingebetteten Raum werden zugänglich und manipulierbar

Proiekt KiMaKu

Sprachmodelle wurden ursprünglich zur Textgenerierung entwickelt, aber:

- Weglassen einiger Modell-Schichten, um die Einbettungen zu erzeugen
- Fertig trainierte Standard-LLMs als Startpunkt
- Durch Low-Rank-Fine-Tuning optimal an den Anwendungsfall anpassbar:
 - Versteht nun Fachjargon
 - Braucht relativ geringen Aufwand
 - Funktioniert in kurzer 7eit
- Rest durch Prompt-Engineering

Projekt zu Computer-Vision

(Bild nicht verfügbar)

- Bildverarbeitung mit Fischaugen-Kameras
- Objekterkennung direkt im verzerrten Bild, ohne vorherige Entzerrung
- KI-Modelle von der Stange funktionieren nur bedingt
- Mit eigener Datengrundlage und Training maßgeschneiderter Modelle geht es besser

Welche Software braucht man zum trainieren?

Der De-facto-Standard

KI-Software an sich:

- Scikit-Learn (*)
 - Allgemeine ML-Aufgaben
 - Das Grundgerüst für viele Projekte
- Tensorflow (*) oder PyTorch (*)
 - Performantes Deep-Learning mit GPUs
 - Leichte Definition von Neuronalen Netzen
- Jax 🏶
 - Ein New-Comer
 - Optimiert für Hochleistungsberechnungen

Gerüst drum herum

- NumPy - Grundlegende numerischen Operationen

- Matplotlib & Seaborn ⊕ Visualisierung

fortiss Transfer

Von der Forschung in die Praxis

fortiss Transfer

fortiss Transfer

Transferbereiche

digitalen Transformation

European Digital Innovation HubDigitale Innovationen für die bayerische **Wirtschaft**

fortiss Transferangebote

Die digitale Transformation gezielt voranbringen

Viel Erfolg beim Lernen lassen!

Kontakt

Dr. Martin Gottwald

fortiss GmbH

Landesforschungsinstitut des Freistaats Bayern für softwareintensive Systeme An-Institut der Technischen Universität München

Guerickestraße 25 80805 München Deutschland

gottwald@fortiss.org (*)

Tel: +49 (89) 3603522 259 Fax: +49 (89) 3603522 50

Vielen Dank!

fortiss © 2025

Diese Präsentation wurde von fortiss erstellt. Sie ist ausschließlich für Präsentationszwecke bestimmt und streng vertraulich zu behandeln. Die Weitergabe der Präsentation an unsere Partner beinhaltet keine Übertragung von Eigentums- oder Nutzungsrechten. Eine Weitergabe an Dritte ist nicht gestattet.